

Exercise 1: Friis' formula and polarization mismatch

Consider the communication system in free space depicted on the figure.

if antenna 1 has a right hand circular polarization (polarization vector is $\mathbf{e}_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ j \\ 0 \end{pmatrix}$) what is the depolarization factor when

antenna 2 has a linear polarization ? What is this factor if antenna 2 has an elliptical polarization defined by $\mathbf{e}_2 = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 \\ 1+j \\ 0 \end{pmatrix}$

Exercise 2

Consider again the link depicted in the figure above (in free space), where $L = 5\text{ km}$ and we consider and freq= 2.45 GHz. The receiver of transceiver 2 has a sensitivity of -100 dBm , and the transmitter 1 emits a power of 10 mW . Antenna 1 has a gain of 3 dBi . What should the gain of antenna 2 be if we consider both antennas matched? How much do we need to increase the power of the transmitter 1 if both antennas have a reflection coefficient of -6 dB ? We consider a depolarization factor $\chi_{\text{pol}}=0.9$ in both cases.